(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(f(x)) → mark(f(f(x)))
chk(no(f(x))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
mat(f(x), f(y)) → f(mat(x, y))
chk(no(c)) → active(c)
mat(f(x), c) → no(c)
f(active(x)) → active(f(x))
f(no(x)) → no(f(x))
f(mark(x)) → mark(f(x))
tp(mark(x)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(no(x)) →+ no(f(x))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / no(x)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
active(f(x)) → mark(f(f(x)))
chk(no(f(x))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
mat(f(x), f(y)) → f(mat(x, y))
chk(no(c)) → active(c)
mat(f(x), c) → no(c)
f(active(x)) → active(f(x))
f(no(x)) → no(f(x))
f(mark(x)) → mark(f(x))
tp(mark(x)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
active(f(x)) → mark(f(f(x)))
chk(no(f(x))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
mat(f(x), f(y)) → f(mat(x, y))
chk(no(c)) → active(c)
mat(f(x), c) → no(c)
f(active(x)) → active(f(x))
f(no(x)) → no(f(x))
f(mark(x)) → mark(f(x))
tp(mark(x)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
Types:
active :: mark:no:X:y:c → mark:no:X:y:c
f :: mark:no:X:y:c → mark:no:X:y:c
mark :: mark:no:X:y:c → mark:no:X:y:c
chk :: mark:no:X:y:c → mark:no:X:y:c
no :: mark:no:X:y:c → mark:no:X:y:c
mat :: mark:no:X:y:c → mark:no:X:y:c → mark:no:X:y:c
X :: mark:no:X:y:c
y :: mark:no:X:y:c
c :: mark:no:X:y:c
tp :: mark:no:X:y:c → tp
hole_mark:no:X:y:c1_0 :: mark:no:X:y:c
hole_tp2_0 :: tp
gen_mark:no:X:y:c3_0 :: Nat → mark:no:X:y:c
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
active,
f,
chk,
mat,
tpThey will be analysed ascendingly in the following order:
active = f
active < chk
f < chk
f < mat
f < tp
mat < chk
chk < tp
mat < tp
(8) Obligation:
TRS:
Rules:
active(
f(
x)) →
mark(
f(
f(
x)))
chk(
no(
f(
x))) →
f(
chk(
mat(
f(
f(
f(
f(
f(
f(
f(
f(
f(
f(
X)))))))))),
x)))
mat(
f(
x),
f(
y)) →
f(
mat(
x,
y))
chk(
no(
c)) →
active(
c)
mat(
f(
x),
c) →
no(
c)
f(
active(
x)) →
active(
f(
x))
f(
no(
x)) →
no(
f(
x))
f(
mark(
x)) →
mark(
f(
x))
tp(
mark(
x)) →
tp(
chk(
mat(
f(
f(
f(
f(
f(
f(
f(
f(
f(
f(
X)))))))))),
x)))
Types:
active :: mark:no:X:y:c → mark:no:X:y:c
f :: mark:no:X:y:c → mark:no:X:y:c
mark :: mark:no:X:y:c → mark:no:X:y:c
chk :: mark:no:X:y:c → mark:no:X:y:c
no :: mark:no:X:y:c → mark:no:X:y:c
mat :: mark:no:X:y:c → mark:no:X:y:c → mark:no:X:y:c
X :: mark:no:X:y:c
y :: mark:no:X:y:c
c :: mark:no:X:y:c
tp :: mark:no:X:y:c → tp
hole_mark:no:X:y:c1_0 :: mark:no:X:y:c
hole_tp2_0 :: tp
gen_mark:no:X:y:c3_0 :: Nat → mark:no:X:y:c
Generator Equations:
gen_mark:no:X:y:c3_0(0) ⇔ c
gen_mark:no:X:y:c3_0(+(x, 1)) ⇔ mark(gen_mark:no:X:y:c3_0(x))
The following defined symbols remain to be analysed:
f, active, chk, mat, tp
They will be analysed ascendingly in the following order:
active = f
active < chk
f < chk
f < mat
f < tp
mat < chk
chk < tp
mat < tp
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_mark:no:X:y:c3_0(
+(
1,
n5_0))) →
*4_0, rt ∈ Ω(n5
0)
Induction Base:
f(gen_mark:no:X:y:c3_0(+(1, 0)))
Induction Step:
f(gen_mark:no:X:y:c3_0(+(1, +(n5_0, 1)))) →RΩ(1)
mark(f(gen_mark:no:X:y:c3_0(+(1, n5_0)))) →IH
mark(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
active(
f(
x)) →
mark(
f(
f(
x)))
chk(
no(
f(
x))) →
f(
chk(
mat(
f(
f(
f(
f(
f(
f(
f(
f(
f(
f(
X)))))))))),
x)))
mat(
f(
x),
f(
y)) →
f(
mat(
x,
y))
chk(
no(
c)) →
active(
c)
mat(
f(
x),
c) →
no(
c)
f(
active(
x)) →
active(
f(
x))
f(
no(
x)) →
no(
f(
x))
f(
mark(
x)) →
mark(
f(
x))
tp(
mark(
x)) →
tp(
chk(
mat(
f(
f(
f(
f(
f(
f(
f(
f(
f(
f(
X)))))))))),
x)))
Types:
active :: mark:no:X:y:c → mark:no:X:y:c
f :: mark:no:X:y:c → mark:no:X:y:c
mark :: mark:no:X:y:c → mark:no:X:y:c
chk :: mark:no:X:y:c → mark:no:X:y:c
no :: mark:no:X:y:c → mark:no:X:y:c
mat :: mark:no:X:y:c → mark:no:X:y:c → mark:no:X:y:c
X :: mark:no:X:y:c
y :: mark:no:X:y:c
c :: mark:no:X:y:c
tp :: mark:no:X:y:c → tp
hole_mark:no:X:y:c1_0 :: mark:no:X:y:c
hole_tp2_0 :: tp
gen_mark:no:X:y:c3_0 :: Nat → mark:no:X:y:c
Lemmas:
f(gen_mark:no:X:y:c3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_mark:no:X:y:c3_0(0) ⇔ c
gen_mark:no:X:y:c3_0(+(x, 1)) ⇔ mark(gen_mark:no:X:y:c3_0(x))
The following defined symbols remain to be analysed:
active, chk, mat, tp
They will be analysed ascendingly in the following order:
active = f
active < chk
f < chk
f < mat
f < tp
mat < chk
chk < tp
mat < tp
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol active.
(13) Obligation:
TRS:
Rules:
active(
f(
x)) →
mark(
f(
f(
x)))
chk(
no(
f(
x))) →
f(
chk(
mat(
f(
f(
f(
f(
f(
f(
f(
f(
f(
f(
X)))))))))),
x)))
mat(
f(
x),
f(
y)) →
f(
mat(
x,
y))
chk(
no(
c)) →
active(
c)
mat(
f(
x),
c) →
no(
c)
f(
active(
x)) →
active(
f(
x))
f(
no(
x)) →
no(
f(
x))
f(
mark(
x)) →
mark(
f(
x))
tp(
mark(
x)) →
tp(
chk(
mat(
f(
f(
f(
f(
f(
f(
f(
f(
f(
f(
X)))))))))),
x)))
Types:
active :: mark:no:X:y:c → mark:no:X:y:c
f :: mark:no:X:y:c → mark:no:X:y:c
mark :: mark:no:X:y:c → mark:no:X:y:c
chk :: mark:no:X:y:c → mark:no:X:y:c
no :: mark:no:X:y:c → mark:no:X:y:c
mat :: mark:no:X:y:c → mark:no:X:y:c → mark:no:X:y:c
X :: mark:no:X:y:c
y :: mark:no:X:y:c
c :: mark:no:X:y:c
tp :: mark:no:X:y:c → tp
hole_mark:no:X:y:c1_0 :: mark:no:X:y:c
hole_tp2_0 :: tp
gen_mark:no:X:y:c3_0 :: Nat → mark:no:X:y:c
Lemmas:
f(gen_mark:no:X:y:c3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_mark:no:X:y:c3_0(0) ⇔ c
gen_mark:no:X:y:c3_0(+(x, 1)) ⇔ mark(gen_mark:no:X:y:c3_0(x))
The following defined symbols remain to be analysed:
mat, chk, tp
They will be analysed ascendingly in the following order:
mat < chk
chk < tp
mat < tp
(14) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol mat.
(15) Obligation:
TRS:
Rules:
active(
f(
x)) →
mark(
f(
f(
x)))
chk(
no(
f(
x))) →
f(
chk(
mat(
f(
f(
f(
f(
f(
f(
f(
f(
f(
f(
X)))))))))),
x)))
mat(
f(
x),
f(
y)) →
f(
mat(
x,
y))
chk(
no(
c)) →
active(
c)
mat(
f(
x),
c) →
no(
c)
f(
active(
x)) →
active(
f(
x))
f(
no(
x)) →
no(
f(
x))
f(
mark(
x)) →
mark(
f(
x))
tp(
mark(
x)) →
tp(
chk(
mat(
f(
f(
f(
f(
f(
f(
f(
f(
f(
f(
X)))))))))),
x)))
Types:
active :: mark:no:X:y:c → mark:no:X:y:c
f :: mark:no:X:y:c → mark:no:X:y:c
mark :: mark:no:X:y:c → mark:no:X:y:c
chk :: mark:no:X:y:c → mark:no:X:y:c
no :: mark:no:X:y:c → mark:no:X:y:c
mat :: mark:no:X:y:c → mark:no:X:y:c → mark:no:X:y:c
X :: mark:no:X:y:c
y :: mark:no:X:y:c
c :: mark:no:X:y:c
tp :: mark:no:X:y:c → tp
hole_mark:no:X:y:c1_0 :: mark:no:X:y:c
hole_tp2_0 :: tp
gen_mark:no:X:y:c3_0 :: Nat → mark:no:X:y:c
Lemmas:
f(gen_mark:no:X:y:c3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_mark:no:X:y:c3_0(0) ⇔ c
gen_mark:no:X:y:c3_0(+(x, 1)) ⇔ mark(gen_mark:no:X:y:c3_0(x))
The following defined symbols remain to be analysed:
chk, tp
They will be analysed ascendingly in the following order:
chk < tp
(16) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol chk.
(17) Obligation:
TRS:
Rules:
active(
f(
x)) →
mark(
f(
f(
x)))
chk(
no(
f(
x))) →
f(
chk(
mat(
f(
f(
f(
f(
f(
f(
f(
f(
f(
f(
X)))))))))),
x)))
mat(
f(
x),
f(
y)) →
f(
mat(
x,
y))
chk(
no(
c)) →
active(
c)
mat(
f(
x),
c) →
no(
c)
f(
active(
x)) →
active(
f(
x))
f(
no(
x)) →
no(
f(
x))
f(
mark(
x)) →
mark(
f(
x))
tp(
mark(
x)) →
tp(
chk(
mat(
f(
f(
f(
f(
f(
f(
f(
f(
f(
f(
X)))))))))),
x)))
Types:
active :: mark:no:X:y:c → mark:no:X:y:c
f :: mark:no:X:y:c → mark:no:X:y:c
mark :: mark:no:X:y:c → mark:no:X:y:c
chk :: mark:no:X:y:c → mark:no:X:y:c
no :: mark:no:X:y:c → mark:no:X:y:c
mat :: mark:no:X:y:c → mark:no:X:y:c → mark:no:X:y:c
X :: mark:no:X:y:c
y :: mark:no:X:y:c
c :: mark:no:X:y:c
tp :: mark:no:X:y:c → tp
hole_mark:no:X:y:c1_0 :: mark:no:X:y:c
hole_tp2_0 :: tp
gen_mark:no:X:y:c3_0 :: Nat → mark:no:X:y:c
Lemmas:
f(gen_mark:no:X:y:c3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_mark:no:X:y:c3_0(0) ⇔ c
gen_mark:no:X:y:c3_0(+(x, 1)) ⇔ mark(gen_mark:no:X:y:c3_0(x))
The following defined symbols remain to be analysed:
tp
(18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol tp.
(19) Obligation:
TRS:
Rules:
active(
f(
x)) →
mark(
f(
f(
x)))
chk(
no(
f(
x))) →
f(
chk(
mat(
f(
f(
f(
f(
f(
f(
f(
f(
f(
f(
X)))))))))),
x)))
mat(
f(
x),
f(
y)) →
f(
mat(
x,
y))
chk(
no(
c)) →
active(
c)
mat(
f(
x),
c) →
no(
c)
f(
active(
x)) →
active(
f(
x))
f(
no(
x)) →
no(
f(
x))
f(
mark(
x)) →
mark(
f(
x))
tp(
mark(
x)) →
tp(
chk(
mat(
f(
f(
f(
f(
f(
f(
f(
f(
f(
f(
X)))))))))),
x)))
Types:
active :: mark:no:X:y:c → mark:no:X:y:c
f :: mark:no:X:y:c → mark:no:X:y:c
mark :: mark:no:X:y:c → mark:no:X:y:c
chk :: mark:no:X:y:c → mark:no:X:y:c
no :: mark:no:X:y:c → mark:no:X:y:c
mat :: mark:no:X:y:c → mark:no:X:y:c → mark:no:X:y:c
X :: mark:no:X:y:c
y :: mark:no:X:y:c
c :: mark:no:X:y:c
tp :: mark:no:X:y:c → tp
hole_mark:no:X:y:c1_0 :: mark:no:X:y:c
hole_tp2_0 :: tp
gen_mark:no:X:y:c3_0 :: Nat → mark:no:X:y:c
Lemmas:
f(gen_mark:no:X:y:c3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_mark:no:X:y:c3_0(0) ⇔ c
gen_mark:no:X:y:c3_0(+(x, 1)) ⇔ mark(gen_mark:no:X:y:c3_0(x))
No more defined symbols left to analyse.
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_mark:no:X:y:c3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(21) BOUNDS(n^1, INF)
(22) Obligation:
TRS:
Rules:
active(
f(
x)) →
mark(
f(
f(
x)))
chk(
no(
f(
x))) →
f(
chk(
mat(
f(
f(
f(
f(
f(
f(
f(
f(
f(
f(
X)))))))))),
x)))
mat(
f(
x),
f(
y)) →
f(
mat(
x,
y))
chk(
no(
c)) →
active(
c)
mat(
f(
x),
c) →
no(
c)
f(
active(
x)) →
active(
f(
x))
f(
no(
x)) →
no(
f(
x))
f(
mark(
x)) →
mark(
f(
x))
tp(
mark(
x)) →
tp(
chk(
mat(
f(
f(
f(
f(
f(
f(
f(
f(
f(
f(
X)))))))))),
x)))
Types:
active :: mark:no:X:y:c → mark:no:X:y:c
f :: mark:no:X:y:c → mark:no:X:y:c
mark :: mark:no:X:y:c → mark:no:X:y:c
chk :: mark:no:X:y:c → mark:no:X:y:c
no :: mark:no:X:y:c → mark:no:X:y:c
mat :: mark:no:X:y:c → mark:no:X:y:c → mark:no:X:y:c
X :: mark:no:X:y:c
y :: mark:no:X:y:c
c :: mark:no:X:y:c
tp :: mark:no:X:y:c → tp
hole_mark:no:X:y:c1_0 :: mark:no:X:y:c
hole_tp2_0 :: tp
gen_mark:no:X:y:c3_0 :: Nat → mark:no:X:y:c
Lemmas:
f(gen_mark:no:X:y:c3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_mark:no:X:y:c3_0(0) ⇔ c
gen_mark:no:X:y:c3_0(+(x, 1)) ⇔ mark(gen_mark:no:X:y:c3_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_mark:no:X:y:c3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(24) BOUNDS(n^1, INF)